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Abstract
We investigate entanglement measures in the infinite-dimensional regime.
First, we discuss the peculiarities that may occur if the Hilbert space of a
bi-partite system is infinite dimensional, most notably the fact that the set
of states with infinite entropy of entanglement is trace-norm dense in state
space, implying that in any neighbourhood of every product state lies an
arbitrarily strongly entangled state. The starting point for a clarification of this
counterintuitive property is the observation that if one imposes the natural and
physically reasonable constraint that the mean energy is bounded from above,
then the entropy of entanglement becomes a trace-norm continuous functional.
The considerations will then be extended to the asymptotic limit, and we will
prove some asymptotic continuity properties. We proceed by investigating
the entanglement of formation and the relative entropy of entanglement in the
infinite-dimensional setting. Finally, we show that the set of entangled states is
still trace-norm dense in state space, even under the constraint of a finite mean
energy.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.−a

1. Introduction

When A Einstein, B Podolski and N Rosen published their seminal paper on the question
whether the quantum mechanical description of physical reality could be considered complete,
they formulated their gedanken experiment in terms of two quantum systems that are
entangled through their position and momentum. In the well-known reformulation by Bohm
the entangled quantum systems are replaced by two spin-1/2 particles, each of which is
supplemented with a two-dimensional Hilbert space [1]. In this formulation the physical
situation can be discussed without the need to take the technicalities of infinite-dimensional
spaces into account. Most of the theory of quantum information has in fact been developed
for finite-dimensional settings, the qubit—the two-level system—being the prototypical
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elementary quantum system in this context [2]. Only quite recently, several contributions
in the field addressed issues of quantum information in infinite-dimensional settings [3–7].
Experiments have been performed with quantum optical systems where not the polarization
degrees of freedom, but those corresponding to the canonical coordinates of the field modes
have been employed. Influenced by such experiments, the theory of entanglement has been
extended to systems with infinite-dimensional Hilbert spaces, most notably for so-called
Gaussian quantum states, which form an important class of states from a practical point of
view [5, 6]. In particular, the question of separability and distillability of Gaussian states of
multi-mode systems is essentially solved. Concerning the theory of entanglement of non-
Gaussian states, however, not so much is known to date.

It is the purpose of this paper to comment on some peculiarities that may occur in the
infinite-dimensional setting when quantifying the degree of entanglement, and on ways to
retain meaningful measures of entanglement. The starting point is the following observation:
on a bi-partite infinite-dimensional Hilbert space there always exist pure states which are
arbitrarily close to a pure product state—as quantified by the trace-norm difference—but they
exhibit an entropy of entanglement which is infinite. In this sense the assignment of the value
zero of the entanglement of the pure product state is not entirely unambiguous. A similar
situation can occur in the mixed-state domain. The key insight leading to a possible resolution
of this problem is derived from an investigation of the mean energy of the involved quantum
states: if one imposes the natural requirement that the mean energy of the involved states is
bounded from above, then one retains meaningful measures of entanglement. In other words,
although there are indeed sequences of pure states that converge to a certain pure state in trace-
norm while the entropy of entanglement is divergent, their energy must necessarily diverge.

The scope of this paper is quite modest: we will neither characterize entanglement
measures through certain natural axioms, nor try to equip the known entanglement measures
with a clear-cut operational interpretation in the infinite-dimensional setting. Instead, this
paper presents a collection of clarifying statements concerning the continuity of entanglement
measures. We will discuss the trace-norm continuity of the entropy of entanglement and an
asymptotic continuity property. In addition, we will study the relative entropy of entanglement
and the entanglement of formation. In the last section we will consider the question of the
existence of a separable neighbourhood of some mixed state under a constraint on the mean
energy.

2. Notation

We start by clarifying the notation that will be used in this paper. We will consider the
situation where the composite system consists of two parts A and B (each of which having
finitely many degrees of freedom) such that the Hilbert space of the joint system can be
written as H = HA ⊗ HB . Throughout the paper we will assume that dim[HA] = ∞ and
dim[HB] = ∞. The notation S(H) will be used for the set of density operators on H, that is,
the set of positive trace-class operators with trace 1. In the same way the set S(HA) is defined
as the state space on HA. The symbol ‖.‖ will be reserved for the trace-norm, which is defined
as ‖A‖ = Tr[|A|] = Tr[(A†A)1/2] for operators A, while the standard operator norm will be
written as |||.|||. For our purposes it will also be necessary to impose a certain requirement on
the Hamiltonian H = HA ⊗ 1 + 1 ⊗HB of the bi-partite system. It will be demanded that H
has a discrete spectrum, such that the spectral decomposition of HA and HB reads

HA =
∞∑
n=0

ε
(n)
A π

(n)
A and HB =

∞∑
n=0

ε
(n)
B π

(n)
B (1)



On the quantification of entanglement in infinite-dimensional quantum systems 3913

respectively, where ε(i)A � ε
(j)

A and ε(i)B � ε
(j)

B for i < j . π
(n)
A are the projectors on the

one-dimensional spaces spanned by the mutually orthogonal φ(n)A ∈ HA, and analogously for
π
(n)
B . We will always assume that the Hamiltonian H of the system has the property that

Tr[e−βH ] < ∞ (2)

for all β > 0. This is a natural assumption: it is simply required that the Gibbs state exists for
all inverse temperatures of the system. In particular, it means that there can be no limit points
in the spectrum of H, which in turn implies that no eigenvalue can be infinitely degenerate.

3. Entropy of entanglement

Entanglement measures give an account of the degree of entanglement of a given quantum
state. They are functionals mapping state space on the set of non-negative real numbers;
the larger the number is, the more entangled is the quantum state. For pure states we will
investigate the entropy of entanglement E : S(H) → R

+ (or reduced entropy), defined as

E(ρ) := (S ◦�B)(ρ). (3)

Here, S: S(HA)→ R
+ denotes the von Neumann entropy, which is defined as S(ρ) =

−Tr[ρ log2(ρ)], and �B :S(H) → S(HA) is the partial trace with respect to system B.
The entropy of entanglement quantifies to what extent the state departs from a product state.
As has already been pointed out in the introduction, the entropy of entanglement may be very
different from zero for states which are very ‘close’ to pure product states.

Example 1. Let σ0 = |ψ0〉〈ψ0|, ψ0 = φ0
A ⊗ φ0

B be the ground state of the bi-partite system,
and let {σk}∞k=1 be a sequence of pure states σk = |ψk〉〈ψk |, where

ψk := (1 − δk)
1/2ψ0 + (δk/k)

1/2
k∑

n=1

φ
(n)
A ⊗ φ

(n)
B (4)

and δk := 1/ log(k). In fact, the series {σk}∞k=1 converges to σ0 in trace-norm, i.e.,
limk→∞‖σk − σ0‖ = 0. However,

lim
k→∞

E(σk) = 1 (5)

whereas E(σ0) = 0, since σ0 is a product state.

That is to say, E = S ◦ �B is clearly not continuous in σ0: there are states which are
arbitrarily close to the product ground state with respect to the trace-norm, but they have an
entropy of entanglement that approaches a different value. As the trace-norm difference is an
upper bound for differences in expectation values of all contractions, it is clear that the smaller
the trace-norm difference of a pair of states is, the more difficult is it to distinguish the states
by operational means. The situation is actually even more surprising, as the set of states which
have infinite von Neumann entropy is trace-norm dense in state space [8]. As can be easily
verified, the set of pure states with infinite entropy of entanglement is also trace-norm dense
in the set of all pure states.

Proposition 2. For all ψ ∈ H and all ε > 0 there exists a vector φ ∈ H such that
‖|ψ〉〈ψ| − |φ〉〈φ|‖ < ε and (S ◦�B)(|φ〉〈φ|) = ∞.
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Proof. According to the Schmidt decomposition (which can be applied in this infinite-
dimensional setting) there exists an orthonormal basis {ψ(n)

A }∞n=1 of HA and a basis {ψ(n)
B }∞n=1

of HB such that ψ ∈ H can be written in the form

ψ =
∞∑
n=1

(
p(n)

)1/2
ψ
(n)

A ⊗ ψ
(n)

B (6)

where {p(n)}∞n=0 forms a probability distribution. For each n ∈ N, define a sequence {q(n)k }∞k=1

through q(1)k = pk , and

q
(n)
k := p(n) + 1/

(
kn log2(n)

2
)

δk
n = 2, 3, . . . (7)

where δk > 0 is chosen in such a way that {q(n)k }∞n=1 is also a probability distribution. This
gives rise to a sequence of state vectors ψk ∈ H defined as

ψk :=
∞∑
n=1

(
q
(n)

k

)1/2
ψ
(n)

A ⊗ ψ
(n)

B . (8)

The sequence {p(n)}∞n=0 is convergent; on using the fact that f : [0, 1] → R
+ defined as

f (x) = −x log2(x) is monotonically increasing in [0, ε] for some ε > 0, one can show that
(S ◦�B)(|ψk〉〈ψk|) = ∞ for all k ∈ N. However,

lim
k→∞

‖|ψ〉〈ψ| − |ψk〉〈ψk |‖ = lim
k→∞

∞∑
n=1

∣∣p(n) − q
(n)
k

∣∣ = 0. (9)

�
The key observation in a possible clarification of this issue concerns the mean energy

of the states. In the above example, the mean energy Tr[σkH ] grows beyond all bounds.
After all, the energy that can possibly be invested in the preparation of a quantum state is,
in all instances, limited. This is no accident, and we will see that in a sequence of states
{σk}∞k=1 that converges in trace-norm to some state σ such that the sequence of the entropies of
entanglement of σk does not converge to the entropy of entanglement of σ , the mean energy
necessarily diverges.

Let SM(H) ⊂ S(H) for a given number M > 0 and for a given Hamiltonian H be the set
of states with a mean energy of at most M,

SM(H) := {ρ ∈ S(H) | Tr[ρH ] < M}. (10)

Although this set is nowhere dense in state space—as H is an unbounded operator according
to the previous assumptions—it is a reasonable subset of the state space: it simply reflects
the natural requirement that the mean energy is bounded from above. On this set, it turns
out that several entanglement measures do not exhibit the above pathologies. We start with
the trace-norm continuity of the entropy of entanglement, which is a corollary of a theorem
in [8] due to Wehrl.

Proposition 3. LetM > 0, letσ ∈ SM(H), and let {σk}∞k=1 be a sequence of states σk ∈ SM(H)
satisfying σk → σ in trace-norm. Then

lim
k→∞

|E(σ)− E(σk)| = 0 (11)

that is, the entropy of entanglementE : SM(H) → R
+ is a trace-norm continuous functional.

Proof. This statement is a consequence of a statement concerning the continuity of the von
Neumann entropy under an appropriate constraint of the energy [8]: if {ωk}∞k=1 is a sequence
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of states taken from SM(K) satisfying ωk → ω in trace-norm for some state ω ∈ SM(K),
together with the above assumptions concerning the spectrum of H, then

lim
k→∞

S(ωk) = S(ω). (12)

The states ωk := �B(σk) with K := HA form such a sequence, since

‖�B(σk)−�B(σ)‖ � ‖σk − σ‖ (13)

for all k ∈ N by the contraction property of the trace-norm under completely positive maps,
and since

Tr[HA�B(σk)] � Tr[Hσk] < M. (14)

Hence, limk→∞|(S ◦�B)(σk)− (S ◦�B)(σ)| = 0 if limk→∞‖σk − σ‖ = 0. �

Therefore, if one introduces the natural and physically reasonable restriction that the mean
energy must be bounded from above, then the entropy of entanglement becomes continuous,
and a situation as in example 1 or in proposition 2 is excluded through this restriction3. Also,
the entropy of entanglement is, in all instances, finite for pure states taken from SM(H) for
M > 0. The statement of proposition 3 alone does not, however, guarantee that the entropy of
entanglement has appropriate continuity properties to describe entanglement manipulation in
the asymptotic limit [10–14], in the sense of the limit of infinitely many identically prepared
quantum systems. In particular, in order to give the entropy of entanglement an interpretation
in terms of optimal achievable conversion rates in distillation-type protocols [10], one would
aim at finding the following continuity property. Take a large number m of identically prepared
quantum systems in a state ρ. In a distillation procedure one would like to convert the state
ρ⊗m of these systems into a product state σ⊗n consisting of a number of highly entangled
states σ of finite-dimensional quantum systems. For any finite number of identically prepared
systems this procedure may not be possible in an optimal manner. One would then obtain a
state σn, which is similar to yet not identical with σ⊗n. One may nevertheless require that the
transformation is optimal in the asymptotic limit n → ∞. Roughly speaking, the measure
of entanglement should then assign a value to σn which is very similar to the value for σ⊗n,
such that the difference per copy becomes negligible in the asymptotic limit. Note that none
of the mixed states σn is required to have a finite-dimensional carrier. It is the purpose of
the subsequent proposition to show that under an appropriate restriction on the mean energies,
the entropy of entanglement exhibits an asymptotic continuity property4.

Proposition 4. Let σ ∈ SM(H),M > 0, be a pure state that is supported on a finite-
dimensional subspace of S(H), and let {σn}∞n=1, σn ∈ SnM(H⊗n), be a sequence of states
satisfying

lim
n→∞ ‖σn − σ⊗n‖ = 0. (15)

Then,

lim
n→∞

∣∣E(σ⊗n)− E(σn)
∣∣

n
= 0. (16)

The subsequent lemma will prepare the proof. The property of the von Neumann entropy
that will be investigated recalls the lower semi-continuity property [16]. In our case, however,
3 A similar observation has been made in [9], where the existence of fractal states in Hilbert space has been
demonstrated. It had also been shown that fractal states do not exist if one introduces an energy constraint.
4 In the finite-dimensional setting the asymptotic continuity in this sense—together with convexity, normalization
and monotonicity under local operations—is required in order to specify the entropy of entanglement as the unique
measure of entanglement [14].
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we consider a sequence of states which are defined on a sequence of Hilbert spaces of increasing
dimension.

Lemma 5. Let ω be a state that is supported on a finite-dimensional subspace of S(HA), and
let {ωn}∞n=1, ωn ∈ S(H⊗n

A ), be a sequence of states satisfying

lim
n→∞

∥∥ωn − ω⊗n∥∥ = 0.

Then,

S(ω) � lim inf
n→∞

1

n
S(ωn). (17)

Proof. Let π be the projection operator on the support of ω, and let

ηn := π⊗nωnπ⊗n λn := ‖ηn‖. (18)

The trace-norm distance is non-increasing under trace-preserving completety positive maps,
and in particular, under pinchings [15]. Therefore,∥∥ω⊗n − ηn

∥∥ + (1 − λn) �
∥∥ω⊗n − ωn

∥∥ . (19)

Hence, if limn→∞‖ω⊗n − ωn‖ = 0 holds, then also limn→∞‖ω⊗n − ηn‖ = 0, and
limn→∞λn = 1. In turn, if limn→∞‖ω⊗n − ηn‖ = 0, then

lim
n→∞

∥∥λnω⊗n − ηn
∥∥ = 0 (20)

as ∥∥λnω⊗n − ηn
∥∥ � |λn − 1| +

∥∥ω⊗n − ηn
∥∥ . (21)

The triangle inequality yields

|S(ω⊗n)− S(ηn)|/n � |S(ω⊗n)− S(ηn/λn)|/n + |1 − 1/λn|S(ηn)/n− log2(λn)/(nλn).

(22)

The second term on the right-hand side in equation (22) certainly vanishes in the limit n → ∞,
as S(ηn)/n � C for all n ∈ N for some appropriately chosen C > 0. By applying Fannes’
inequality5 on the first term and by making use of equation (21) one can conclude that

lim
n→∞

∣∣S(ω⊗n)− S
(
π⊗nωnπ⊗n)∣∣
n

= 0 (23)

if limn→∞‖ω⊗n − ωn‖ = 0. Using the function f defined as f (x) = −x log2(x) one finds
that

lim inf
n→∞

1

n
S(ωn) � lim inf

n→∞
1

n
Tr
[
π⊗nf (ωn)

] = S(ω)

which is the statement of the lemma. �

Proof of proposition 4. The first step of the proof can be performed just as in lemma 5. Let
ξ ∈ SM(H), let ω be a state that is supported on a finite-dimensional subspace of SM(H), and
let {ωn}∞n=1, ωn ∈ SnM(H⊗n

A ), be a sequence of states satisfying limn→∞‖ωn − ω⊗n‖ = 0.
Then

S(ξ‖ω) � lim inf
n→∞

1

n
S
(
ξ⊗n‖ωn

)
(24)

5 Let σ and ρ be states on a finite-dimensional Hilbert space H with dimension d. Fannes’ inequality [17, 16] states
that if ‖σ − ρ‖ < 1/3, then

|S(σ)− S(ρ)| � log(d)‖σ − ρ‖ − ‖σ − ρ‖ log(‖σ − ρ‖).
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holds. The validity of equation (24) can be seen as follows: the relative entropy of ξ⊗n with
respect to ω⊗n can be written as [16, 8]

S(ξ⊗n‖ω⊗n) = sup
µ∈[0,1]

sup
πn

Tr
[
πn(f (µξ

⊗n + (1 − µ)ω⊗n)− µf (ξ⊗n)− (1 − µ)f (ω⊗n))
]
(25)

where the supremum is taken over all finite projection operators πn on H⊗n
A . So just as

in lemma 5, applying the triangle inequality and Fannes’ inequality several times yields
equation (24). In particular, one has to make use of∣∣S(µξ⊗n + (1 − µ)ω⊗n)− S

(
µξ⊗n + (1 − µ)ηn

)∣∣
n

�
∣∣S(µξ⊗n + (1 − µ)ω⊗n)− S

(
µξ⊗n + (1 − µ)ηn/λn

)∣∣
n

+

∣∣S(µξ⊗n + (1 − µ)ηn/λn
)− S

(
µξ⊗n + (1 − µ)ηn

)∣∣
n

. (26)

Equation (24) is now the starting point of an argument along the lines of the argument of [8]:
since the free energy can be expressed in terms of the relative entropy according to

1

n
F
(
ωn, β,H

⊗n) = S
(
σ⊗n
β

∥∥ωn)/n− log2(Tr[e−βH ])/β

it has the property

F(ω, β,H) � lim inf
n→∞

1

n
F
(
ωn, β,H

⊗n) (27)

implying that

β Tr[ωH ] − S(ω) � lim inf
n→∞

1

n

(
β Tr

[
ωnH

⊗n]− S(ωn)
)

(28)

and, therefore,

−S(ω) � lim inf
n→∞ (−S(ωn)/n)+β lim sup

n→∞

∣∣Tr
[
ωnH

⊗n]∣∣ /n + β Tr[ωH ] (29)

for all β > 0. Again, the sum of the last two terms of equation (29) is bounded from above by
2βM , providing the inequality

−S(ω) � lim inf
n→∞ (−S(ωn)/n). (30)

Equation (30) and the statement of lemma 4 then imply that S(ω) = limn→∞S(ωn). Finally,
one can argue as in proposition 3, by taking ω := φB(σ) and ωn := �B(σn). This gives rise
to the asymptotic continuity property stated in equation (16). �

This asymptotic continuity property concerned the entropy of entanglement. A similar
property would be desirable for sequences of states that are possibly mixed states. In this
context it is of interest to see whether typical measures for mixed states give, loosely speaking,
the appropriate value when they are evaluated for pure states. More precisely, one may
ask whether entanglement measures are trace-norm continuous in pure states, and whether
they exhibit an asymptotic continuity property. We will discuss these questions for the
relative entropy of entanglement [18] and the entanglement of formation [10], starting with the
latter.
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For a given mixed state σ ∈ SM(H), M > 0, there exist (uncountably many) sequences
{p(i)}∞i=1 of positive numbers forming a probability distribution, p(1) � p(2) � . . . , and
sequences {ψ(i)}∞i=1 of state vectors ψ(i) ∈ H such that

σ =
∑
i

pi
∣∣ψ(i)

〉〈
ψ(i)

∣∣ . (31)

The pair ({p(i)}∞i=1, {ψ(i)}∞i=1) will be called the decomposition of σ . As for a finite-
dimensional Hilbert space one may define the entanglement of formation as

EF(σ) = inf
∑
i

pi(S ◦�B)
(∣∣ψ(i)

〉〈
ψ(i)

∣∣) (32)

where the infimum is understood with respect to all decompositions of σ . In the case of a finite-
dimensional Hilbert space the infimum is always attained, and by virtue of Caratheodory’s
theorem one can find an upper bound for the required number of terms in a decomposition of
the state. It is worth noting that, using a different language, a decomposition of a state σ can
also be represented by probability measuresµσ on state space with the barycentre b(µσ ) = σ .
The entanglement of formation can then be defined via a minimization of the mean local von
Neumann entropy with respect to all probability measures with the same barycentre. This
approach has been pursued in [4], where the entanglement of formation has been studied in
the case of a bi-partite system, with the systems being finite dimensional. The main difference
of the situation in [4] and in the present paper is that in the case of one finite-dimensional
subsystem the trace-norm continuity of the von Neumann entropy is available.

Proposition 6. Let M > 0, let σ ∈ SM(H), σ = |ψ〉〈ψ|, be a pure state, and let {σk}∞k=1 be a
sequence of states σk ∈ SM(H) with σk → σ in trace-norm. Then

lim
k→∞

|EF(σk)− EF (σ)| = 0. (33)

Proof. We start with proving the lower semi-continuity of EF in σ . Let ξ > 0 be a
number satisfying EF(σk) � ξ for all k ∈ N. For all ε > 0 there exists a decomposition
({p(i)k }∞i=1, {ψ(i)

k }∞i=1) of each σk such that∑
i

p
(i)
k (S ◦�B)

(∣∣ψ(i)
k

〉〈
ψ
(i)
k

∣∣) � ξ + ε. (34)

The fact that σk → σ = |ψ〉〈ψ| in trace-norm implies that there exists a sequence of real
numbers {fk}∞k=1 with limk→∞fk = 0, such that

lim
k→∞

∑
i

p
(i)

k θ
(
fk − ∥∥∣∣ψ(i)

k

〉〈
ψ
(i)

k

∣∣− σ
∥∥) = 1 (35)

where θ : R → {0, 1} is the Heaviside function. For each k construct a sequence {q(i)k }∞i=1 of
real numbers as

q
(i)
k =

{
p
(i)
k if fk − ∥∥∣∣ψ(i)

k

〉〈
ψ
(i)
k

∣∣− σ
∥∥ > 0

q
(i)

k = 0 otherwise.
(36)

Similarly, define a sequence {φ(i)k }∞k=1 through φk = ψk if fk − ‖|ψ(i)
k 〉〈ψ(i)

k | − σ‖ > 0, and
φk = ψ otherwise. It follows that∑

i

q
(i)
k (S ◦�B)

(∣∣φ(i)k 〉〈φ(i)k ∣∣) � ξ + ε (37)

limk→∞‖|φ(i)k 〉〈φ(i)k |−σ‖ = 0 for all i, and limk→∞
∑

i q
(i)
k = 1. Hence, due to the lower semi-

continuity of the von Neumann entropy we can conclude that also (S ◦�B)(σ) � ξ + ε. As
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ε > 0 was arbitrary, it follows thatEF (σ) � ξ , which means thatEF is lower semi-continuous
in σ . Note that the constraint on the mean energy was not needed in this step.

The second part of the proof will be concerned with the upper semi-continuity in σ . Let
ξ ∈ R such thatEF (σk) � ξ for all k ∈ N. Essentially, the proof again follows to a large extent
the lines of the argument in [8], where additionally, we make use of the convexity of the relative
entropy functional. Let ({p(i)k }∞i=1, {ψ(i)

k }∞i=1) be a decomposition of σk , and let ω := �B(σ),
ωk := �B(σk) and ω(i)k := �B(|ψ(i)

k 〉〈ψ(i)
k |). On using both the lower semi-continuity and the

convexity of the relative entropy functional one obtains

S(ω‖σβ) � lim inf
k→∞

S(ωk‖σβ) � lim inf
k→∞

∑
i

p
(i)
k S

(
ω
(i)
k

∥∥σβ). (38)

Therefore, F(ω, β,HA) � lim infk→∞
∑

i p
(i)

k F (ω
(i)

k , β,HA), which means that

β Tr[ωHA] − S(ω) � lim inf
k→∞

(
β Tr[ωkHA] −

∑
i

p(i)S
(
ω
(i)

k

))
(39)

and

−S(ω) � lim inf
k→∞

∑
i

p(i)
(−S(ω(i)k )) + β lim sup

k→∞
|Tr[ωkHA]| + β Tr[ωHA]. (40)

Hence, we arrive at

−S(ω) � lim inf
k→∞

∑
i

p(i)
(− S

(
ω
(i)
k

))
. (41)

As EF(σk) � ξ for all k ∈ N, and the above decomposition is not necessarily optimal for
EF(σk), ∑

i

p(i)(S ◦�B)
(∣∣ψ(i)

k

〉〈
ψ
(i)
k

∣∣) � ξ. (42)

The last step is to see that therefore, (S ◦ �B)(σ) � ξ , which means that EF is also upper
semi-continuous in σ . �

Therefore, we conclude that the entanglement of formation for pure states can indeed be
simply identified with the entropy of entanglement on the set SM(H). A similar argument
applies again on the asymptotic limit: if we have a series of mixed states that converges in
trace-norm to the n-fold tensor product of a pure state with a finite support, then, again, one
can expect an asymptotic continuity as in proposition 4.

Proposition 7. Let σ ∈ SM(H), M > 0, be a pure state that is supported on a finite-
dimensional subspace of S(H), and let {σn}∞n=1, σn ∈ SnM(H⊗n), be a sequence of states
satisfying limn→∞‖σn − σ⊗n‖ = 0. Then

lim
n→∞

∣∣EF (σ⊗n)− EF (σn)
∣∣

n
= 0. (43)

Proof. One can proceed in the same way as proposition 6. Instead of the mere lower
semi-continuity of the von Neumann entropy one has to make use of the statement of
lemma 5. �

For general mixed states the actual minimization that is necessary in order to evaluate the
entanglement of formation in the infinite-dimensional setting appears to be quite intractable,
and we do not consider the entanglement of formation in this situation.
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4. Relative entropy of entanglement

In the finite-dimensional setting the relative entropy of entanglement is defined as the minimal
‘distance’ of a given state to an appropriately chosen set that is closed under local quantum
operations together with classical communication (LOCC) and which includes the identity
[18]. The distance is quantified by means of the relative entropy functional. Most typically,
one chooses either the set of separable states or the set of states with a positive partial transpose,
the set of PPT states. In the case that the Hilbert spaces are infinite dimensional, one can
define the relative entropy of entanglement in the same way—with the exception that care is
needed in the definition of the notion of the set of separable states. As in [19, 3] we define
the set of separable states D(H) ⊂ S(H) as the set of states for which there exists a sequence
{ωk}∞k=1, ωn ∈ S(H), such that ωk → ω in trace-norm, and each ωk is of the form

ωk =
∑
i

p
(n)

i η
(k,i)

A ⊗ η
(k,i)

B (44)

where η(k,i)A ∈ S(HA), η
(k,i)
B ∈ S(HB) for all i, k, and {p(k)i }∞i=1 form probability distributions

for all k, i.e., one requires that the state ω can be approximated in trace-norm by convex
combinations of products [19, 3], which in turn means that D(H) is the closed convex hull
of the set of products (with respect to the topology induced by the trace-norm). Another
reasonable set is the set P(H) ⊂ S(H) of states that can be approximated in (trace-norm) by
PPT states, that is, states ω ∈ S(H) for which their partial transpose ωTA is again a state. The
relative entropy of entanglement is the map ER:S(H) → R

+ defined as

ER(σ) = inf
ρ∈D(H)

S(σ‖ρ) (45)

or, alternatively, with D(H) being replaced by P(H). Again, we are interested whether the
relative entropy of entanglement is trace-norm continuous in pure states. Here, we will,
however, show the stronger statement of continuity on the whole state space.

Proposition 8. The relative entropy of entanglement ER:SM(H) → R
+ is trace-norm

continuous.

Proof. Let {σk}∞k=1 be a sequence of states σk ∈ SM(H) for which limk→∞‖σk − σ‖ = 0. Let
ρk ∈ SM(H) for each σk be the state for whichER(σk) = S(σk‖ρk). (Such a state exists due to
the compactness of the considered set and the lower semi-continuity of the relative entropy.)
Then

|ER(σ)− ER(σk)| � |S(σ)− S(σk)| + |−Tr[σ log2(ρ)] + Tr[σk log2(ρk)]|.
As σ, σk ∈ SM(H), limn→∞|S(σ) − S(σk)| = 0. The first term on the right-hand side of the
above equation is bounded from above by

|−Tr[σ log2(ρ)] + Tr[σk log2(ρk)]| � |−Tr[σ log2(ρ)] + Tr[σ log2(ωk)]|
+ |−Tr[σ log2(ωk)] + Tr[σk log2(ωk)]| + |−Tr[σk log2(ωk)] + Tr[σk log2(ρk)]|,

(46)

where ωk := ‖σ − σk‖σβ + (1 − ‖σ − σk‖)ρ,. Due to the operator monotonicity of the
logarithm

−Tr[σ log2(ρ)] + Tr[σ log2(ωk)] � log(1 − ‖σ − σk‖) (47)

holds. But −Tr[σ log2(ρ)] � −Tr[σ log2(ωk)], and therefore,

lim
k→∞

|−Tr[σ log2(ρ)] + Tr[σ log2(ωk)]| = 0. (48)
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In the same way one finds that limk→∞|−Tr[σk log2(ωk)] + Tr[σk log2(ρk)]| = 0. The third
term on the right-hand side of equation (46) can be dealt with just as in [12], where the Gibbs
state plays the role of the maximally mixed state. Since

|−Tr[σ log2(ωk)] + Tr[σk log2(ωk)]| � ‖σ − σk‖‖| log2(ωk)‖| (49)

one can again make use of the operator monotonicity of the logarithm to find

‖| log2(ωk)‖| � −log2(‖σ − σk‖) + ‖| log2(σβ)‖| (50)

and hence, limk→∞|−Tr[σ log2(ωk)] + Tr[σk log2(ωk)]| = 0. Collecting the partial results,
one finds that limk→∞|ER(σ)− ER(σk)| = 0. �

The corresponding asymptotic statement reads as follows:

Proposition 9. Let σ ∈ SM(H), M > 0, be a pure state that is supported on a finite-
dimensional subspace of S(H), and let {σn}∞n=1, σn ∈ SnM(H⊗n), be a sequence of states
satisfying limn→∞‖σn − σ⊗n‖ = 0. Then

lim
n→∞

∣∣ER(σ⊗n)− ER(σn)
∣∣

n
= 0. (51)

Proof. One may proceed as before. Again,∣∣ER(σ⊗n)− ER(σn)
∣∣ �

∣∣S(σ⊗n)− S(σn)
∣∣ +
∣∣−Tr

[
σ⊗n log2(ηn) + Tr[σn log2(ρn)]

∣∣. (52)

By means of Fannes’ inequality one can infer that limn→∞|S(σ⊗n) − S(σn)|/n = 0. The
second term on the right-hand side can be bounded from above as in proposition 8, but now
by making use of the n-fold product σ⊗n

β of the Gibbs state σβ . �

This statement ends the considerations of entanglement measures in the infinite-
dimensional setting. We have seen that if the mean energy is bounded from above, and under
an assumption concerning the spectrum of the Hamiltonian H, then several entanglement
measures retain their trace-norm continuity.

5. Non-existence of a separable ball

Motivated by the findings of the two previous sections one might be tempted to think that
with the help of a constraint on the mean energy, a separable neighbourhood of some mixed
state can be recovered. In finite-dimensional bi-partite quantum systems, the situation is as
follows: for any dimension of the Hilbert space of a bi-partite system there exists a separable
neighbourhood of the maximally mixed state—the tracial state [3, 20]. Whenever a state
is closer to the maximally mixed state with respect to the trace-norm (or any other norm),
then one can be sure that the state is not entangled. The size of this neighbourhood is,
however, not independent of the dimension of the system: loosely speaking, it decreases with
increasing dimension of the underlying Hilbert space. In infinite-dimensional systems, the
set of entangled states is trace-norm dense in the state space of the system, and there is no
separable neighbourhoodof any mixed state [3]. It is the purpose of the subsequent proposition
to show that also under the restriction that the mean energy is bounded from above, no such
neighbourhood can be re-established.

Proposition 10. For any ε > 0, M > 0 and σ ∈ SM(H), there exists an entangled state
ρ ∈ SM(H) with the property that ‖σ − ρ‖ < ε.
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Proof. We will prove this statement by constructing a sequence {ρk}∞k=1 of entangled states
ρk ∈ SM(H) that satisfy ρk → σ in trace-norm. Essentially, the idea is to construct a
sequence {ρk}∞k=1 of states which converge to σ in trace norm, but which are entangled on a
2 × 2-dimensional subspace. Let k ∈ N,

Lk := span
{
φ
(i)

A ⊗ φ
(j)

B : i, j ∈ {k, k + 1}} (53)

with φ(i)A and φ(j)B as in section 2, and denote by πk the projection on the Hilbert space

Kk := span
{
φ
(l)
A ⊗ φ

(m)
B : l, m = 0, . . . , k − 1

}
. (54)

Let λk := Tr[πkσπk]. If λk < 1, then one can find a state vector φk ∈ Lk such that the partial
transpose (|φk〉〈φk|)TA is not positive, and

Tr[Hσ ] − Tr[Hπkσπk] � (1 − λk)Tr[H |φk〉〈φk|]. (55)

In this case set

ρk := πkσπk + (1 − λk)|φk〉〈φk|. (56)

If λk = 1, then take ρk := (1 − 1/k)σ + 1/k|φ+
k 〉〈φ+

k |, where φ+
k := (φ

(k)

A ⊗ φ
(k)

B + φ(k+1)
A ⊗

φ
(k+1)
B )/

√
2. The sequence {ρk}∞k=1 has all the desired properties: by definition ρk → σ in

trace-norm, Tr[Hρk] � Tr[Hσ ] < M , and ρk is entangled for every k ∈ N. The partial
transpose of the projection of ρk on Lk is not positive by construction, and hence, this
projection is entangled, according to the Peres–Horodecki criterion [21]. Therefore, ρk is also
an entangled state. �

6. Summary and conclusion

The content of this paper may be summarized in a nutshell as follows: if one imposes
a restriction on the mean energy and requires that the Gibbs state exists, then several
entanglement measures are trace-norm continuous, just as in the finite-dimensional setting.
We investigated the entropy of entanglement, the entanglement of formation, and the relative
entropy of entanglement, both for a single copy and in the asymptotic limit. The findings are
in a sense of less practical than of reassuring nature: if the energy is bounded, then one may
‘truncate’ the state with respect to a finite-dimensional subspace and evaluate the degree of
entanglement on this subspace. This could be relevant in the situation where one considers
a quantum operation that acts on a finite-dimensional subspace of a quantum system, which
has nevertheless an infinite-dimensional Hilbert space. An example of this type is the state
manipulation of the centre-of-mass mode of ions in an ion trap, where one considers only
certain excitations. In an imperfect implementation of the quantum operation the resulting
state may not be strictly confined to a finite-dimensional subset any more. But if the difference
of the actual state and the restriction on the finite-dimensional subset is very small, one should
not expect to have a completely different situation as far as the entanglement of the state is
concerned, by taking the rest of the Hilbert space. In this sense the findings are also relevant
for investigations of the degree of entanglement of Gaussian quantum states.

Needless to say, there are many issues that remain to be addressed. For example the
concepts of entanglement of distillation, the ‘one-shot’ distillation involving a single copy
only, and the asymptotic entanglement cost have so far only been formulated in the finite-
dimensional case in a rigorous manner, and await a systematic investigation for infinite-
dimensional quantum systems.
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Bröcker T and Werner R F 1995 J. Math. Phys. 36 62
Horodecki P and Lewenstein M 2000 Phys. Rev. Lett. 85 2657
Horodecki P, Cirac J I and Lewenstein M 2001 Preprint quant-ph/0103076

[4] Majewski A W 2002 J. Phys. A: Math. Gen. 35 123 Preprint quant-ph/0101030
[5] Simon R 2000 Phys. Rev. Lett. 84 2726

Werner R F and Wolf M M 2001 Phys. Rev. Lett. 86 3658
Giedke G, Kraus B, Lewenstein M and Cirac J I 2001 Phys. Rev. Lett. 87 167904
Giedke G, Duan L-M, Cirac J I and Zoller P 2001 Quantum Inf. Comput. 1 79

[6] Eisert J and Plenio M B 2001 Preprint quant-ph/0109126
Eisert J and Plenio M B 2001 Preprint quant-ph/0111016

[7] Lloyd S and Braunstein S L 1998 Phys. Rev. Lett. 80 4084
Cerf N J, Ipe A and Rottenberg X 2000 Phys. Rev. Lett. 85 1754
Silberhorn Ch, Lam P K, Weiss O, Koenig F, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
Parker S, Bose S and Plenio M B 2000 Phys. Rev. A 61 32305

[8] Wehrl A 1978 Rev. Mod. Phys. 50 221
Wehrl A 1976 Rep. Math. Phys. 10 159
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